
S1 Appendix. Modelling and simulation details

Analytical treatment

The no-stress environment. In terms of the frequency of the SIM allele, pM = pMr +
pMR, the frequency of resistant genotypes, pR = pmR + pMR, and the frequency of resistant
genotypes among those that carry the SIM allele, q = pMR/pM , we may rewrite Eq (7) as

ṗM = −µM pM
ṗR = νR (1− pR)− µR pR
q̇ = νR (1− q)− µR q

. (A)

Remarkably, these equations are independent of each other. Furthermore, the equations
for pR and q are identical; given the same initial conditions pR(0) and q(0), these two
variables thus remain the same. The solution to Eq (A) is

pM(t) = pM(0) e−µM t

pR(t) =
(
1− e−(µR+νR)t

)
νR

µR+νR
+ pR(0) e−(µR+νR)t

q(t) =
(
1− e−(µR+νR)t

)
νR

µR+νR
+ q(0) e−(µR+νR)t

. (B)

The stress environment. To obtain tractable equations for the stress environment,
we assume that s and σ are large, and that the duration of stress is short relative to the
duration of no stress. As indicated in the Methods section, we take the full set of equations,
Eq (8), replace s 7→ αs, σ 7→ ασ, and rescale time dt 7→ dt/α. Then, dividing by α and
letting α→∞, we may neglect the rightmost terms to obtain

ṗmr = −s pmr (pmR + pMR) + σµM pMr

ṗMr = −s pMr (pmR + pMR)− σ (µM + νR) pMr

ṗmR = s pmR (1− pmR − pMR)
ṗMR = s pMR (1− pmR − pMR) + σνR pMr

. (C)

This approximation corresponds to neglecting all mutational transitions that are not mul-
tiplied by σ in Fig 1B. Evidently, this dynamics converges to a unique equilibrium where
all genotypes are resistant, and some fraction of genotypes containing the SIM allele. In
terms of the variables introduced above, this corresponds to pR(t) → 1, q(t) → 1, and
pM(t)→ p∗M for t→∞.

To calculate an expression for the SIM allele frequency after stress p∗M analytically,
we recast the system Eq (C) using the variables pR = pmR + pMR, y = pMr/pR, and
z = pmR/pR: 

ṗR = s pR (1− pR) + σ νR pR y
ẏ = −y [s+ σ (µM + νR (1 + y))]
ż = −σνR y z

. (D)

For given initial conditions (pR(0), y(0), z(0)) and t→∞, this system converges to pR(t)→
1, y(t)→ 0, and

z(t)→ z∞ = z(0)
s+ σ (µM + νR)

s+ σ (µM + νR (1 + y(0)))
. (E)

1



The expression for p∗M is then given by p∗M = (1− z∞).

Recursions for the SIM allele frequency. In both the (R) and (NR) regime, we mea-
sure the genotype frequencies directly before each stress to obtain the SIM allele frequency
p′M after one cycle of stress and no stress by

p′M = (G ◦ F) (pM), (F)

where F and G are two mappings that describe the stress and no-stress phases, respectively.
Throughout, we use the approximation of the stress dynamics from the previous paragraph,
describing it by an instantaneous jump in the SIM allele frequency, pM → F(pM) = p∗M .
Thus, selection is assumed to be strong enough to fix the resistance allele practically
immediately. Furthermore, if the stress does not persist for long, mutations from pMR

to pmR can be neglected, and p∗M = (1− z∞) (with z∞ from Eq (E)) can be expected to
approximate the full dynamics Eq (8) (Fig 1B) well.

We assume that one iteration of stress and no stress takes τ = τS + τNS time units.
In our analytical approach here, stress is approximated by an instantaneous jump in allele
frequencies, hence τS = 0, and we apply the no-stress environment for τNS = τ time units.
Thus, the mapping G = Gτ depends explicitly on τ ; due to equation (B), we have

G(P ) = Gτ (P ) = P e−µM τ . (G)

The mappings of the jumps for the two stress regimes, F (R) and F (NR), will be defined
below.

Note that, in contrast to the approximation described here, numerical simulations of
the full dynamics, i.e., iterating Eq (8) for the stress environment and Eq (7) for the no-
stress environment, naturally require τS > 0 and τNS = τ − τS. However, a comparison
between our analytical results and simulations of the full dynamics for identical values of
τ demonstrates a good fit between the two approaches, indicating that the approximations
made here are justified (see Fig 2).

The recurrent stress regime. Suppose that the same stress occurs every τ > 0 time
units. Since we assume that each stress phase leads to the fixation of the resistance allele,
we have that pR = q = 1 at the beginning of each no-stress phase. Hence, because the
equations of these two variables are identical, see Eq (A), we have pR(t) = q(t) for all times
after the first occurrence of stress. At the end of each no-stress period, we thus have

pR(τ) = q(τ) =
νR

µR + νR
+ e−(µR+νR)τ

(
1− νR

µR + νR

)
(H)

due to Eq (B). Inserting these values to obtain new initial frequencies for the next stress
phase required for Eq (E) allows us to calculate z∞ and thus

F (R)(P ) = 1− z∞ =

= 1− (pR(τ)− P q(τ)) (s+ σ (µM + νR))

s pR(τ) + σ [pR(τ) (µM + νR) + νR P (1− q(τ))]
. (I)
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Inserting this expression and the identity Eq (G) into the general recursion Eq (F) yields

Eq (3). Using the identity Eq (H) and solving for equilibria fulfilling p̂
(R)
M =

(
G ◦ F (R)

)
(p̂

(R)
M )

provides the long-term prevalence of the SIM allele in the recurrent stress regime, p̂
(R)
M , as

given in Eq (4a).

The non-recurrent stress regime. Suppose that the population never experiences
the same stress twice. As a consequence, we may neglect any resistance gained from
previous stress occurrences. Instead, we assume that the fraction of genotypes that initially
are resistant against an upcoming stress is in mutation balance, i.e., determined by the
relative rates of gaining and losing resistance by mutation. Hence, we may use pR = q =
νR/ (µR + νR) instead of Eq (H) to calculate an expression for F (NR) analogously to the

above. Solving p̂
(NR)
M =

(
G ◦ F (NR)

)
(p̂

(NR)
M ), we obtain the long-term prevalence of the

SIM allele in the non-recurrent stress regime, p̂
(NR)
M , as given in Eq (4b).

Comparison between stress regimes. We assign the following names to the non-
trivial terms on the right hand sides of Eq (4):

P(R)
τ = e−µM τ − Γ

(
1− e−µM τ

)(
1 +

µR + νR
νR

(
e(µR+νR)τ − 1

)−1)
, (Ja)

P(NR)
τ = e−µM τ − Γ

(
1− e−µM τ

)
, (Jb)

where Γ > 0 is defined in Eq (5). Since

∆ = P(NR)
τ − P(R)

τ =
1− e−µM τ

e(µR+νR)τ − 1

µR + νR
νR

Γ > 0, (K)

the long-term SIM allele prevalence under non-recurrent stresses is never lower than in the
recurrent stress regime (p̂

(NR)
M ≥ p̂

(R)
M ). In particular, for τ = τc the value of ∆, and hence

of P(R)
τc , is already negative.

The SIM allele cannot be maintained in the population in the recurrent stress regime
if νR is sufficiently small compared to µR. To see this, we rewrite Eq (K) as

∆ =
1

ε

1− e−µM τ

e(µR+νR)τ − 1
Γ. (L)

Then, νR � µR corresponds to ε � 1. Furthermore, on the closed interval [0, τc], the
function

1− e−µM τ

e(µR+νR)τ − 1
Γ

is bounded away from zero, i.e., it has a positive minimum. Therefore, if νR is small, 1/ε
is large, and hence ∆ is large on [0, τc]. Thus, by choosing νR sufficiently small, we may

push P(R)
τ arbitrarily far below zero, thus p̂

(R)
M ≡ 0 for all τ ≥ 0.

3



0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1 stress (R)
2 stresses
3 stresses
4 stresses
NR regime

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1 stress (R)
2 stresses
3 stresses
4 stresses

Eq
ui

lib
riu

m
 S

IM
 fr

eq
ue

nc
y 

( p
    

)
M^

Eq
ui

lib
riu

m
 S

IM
 fr

eq
ue

nc
y 

( p
    

)
M^

Cycle length (rescaled to τ     )crit Time between identical stresses (rescaled to τ     )crit

A B

Figure A: Long-term prevalence of the SIM allele for parameters conflicting the ranking (2),
σ = 100, s = 1, µM = 5× 10−4, µR = 10−2, and νR = 10−4. We chose τS = 10 and varied
τNS accordingly. Unlike in Figure 2, the SIM allele is maintained for a certain range of
values of τ . The black and grey points are the simulation results for the (R) and (NR)
regimes; they closely match their analytical predictions from equation (4), represented by
solid black lines. As expected, an increasing number of stresses increases the long-term
SIM allele prevalences and the interval of τ under which the SIM allele is maintained.

Simulations of an additional parameter set

Under our assumptions in Eq (2), we showed that the SIM allele is always lost under the
recurrent stress (R) regime. A numerical example with σ = 100, s = 1, µM = 10−3,
µR = 10−2, and νR = 10−4 is shown in Fig 2 in the main text. If the SIM allele decays only
at half the rate relative to this example, µM = 5 × 10−4, the basic ranking of parameters
is violated, since we now have µM ≈ νR. Fig A shows that in this case the SIM allele
is maintained for an interval of stress re-occurrence times τ . The fit with our analytical
predictions, Eq (4), remains very good and the qualitative patterns with increasing stress
diversity is unchanged.
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